
A Transparent Server-managed Object Storage
System for HPC

Short paper
Jingqing Mu∗, Jerome Soumagne∗, Houjun Tang†, Suren Byna†, Quincey Koziol†, Richard Warren∗

∗The HDF Group, Champaign, IL
†Lawrence Berkeley National Laboratory, Berkeley, CA

Email: ∗{kmu, jsoumagne, richard.warren}@hdfgroup.org, †{htang4, sbyna, koziol}@lbl.gov

Abstract—On the road to exascale, the high-performance com-
puting (HPC) community is seeing the emergence of multi-tier
storage systems. However, existing data management solutions
for HPC applications are no longer suitable for handling the
increased level of storage complexity and currently delegate that
task back to the user.

We describe a novel object-based data abstraction that takes
advantage of deep memory hierarchies by providing a simplified
programming interface that enables autonomous, asynchronous,
and transparent data movement with a server-driven architec-
ture. Users can define a mapping between the application memory
and abstract storage objects, creating a linkage between either
all or part of an object’s content without data copy or transfer,
avoiding explicit management of complex data movement across
multiple storage hierarchies. We evaluate our system by storing
plasma physics simulation data with different storage layouts.

Keywords—asynchronous transfer; data handling; large scale
systems; memory management; object-centric models;

I. INTRODUCTION

Scientific applications on upcoming HPC systems are fac-
ing challenges from three directions: extreme parallelism, a
deepening heterogeneous memory hierarchy, and data that is
massively increasing in volume and complexity. In particular,
one of the challenges to address the diverse performance char-
acteristics of deep memory hierarchies expected in exascale
systems is the capability and efficiency of data movement
across storage layers. Existing HPC data management and
movement solutions, which were designed for simpler systems
are no longer able to handle that level of complexity; similarly,
scientific data models, which have been designed for 2-tiered
storage hierarchies, need to be revised to embrace a more
gradated storage hierarchy.

Moving toward an end-to-end, object-centric data abstrac-
tion and storage mechanism that takes advantage of deep
storage hierarchies and enables proactive automated perfor-
mance tuning, we have been investigating Proactive Data
Containers (PDC) [1]. A PDC is a container that may reside
in a single storage location (i.e., memory, NVRAM, disk, etc.)
or span across multiple levels, and stores data in an object-
oriented manner. The PDC system provides an interface for
creating, updating, retrieving, and deleting data objects and
for managing metadata on those objects.

Our previous work [1] demonstrated I/O operations initiated
explicitly from a client application. In this paper, we focus on
mapping objects in different levels of the storage hierarchy,
as well as efficient strategies implemented for moving data

asynchronously between storage hierarchies using PDC. We
present new APIs to facilitate server-managed I/O that allows
applications to provide the intent of persistence of objects
while PDC servers handle the actual data movement and
persistence, removing the burden of data movement decisions
from application developers. Overall, this paper has the fol-
lowing contributions:

1) Application intent-based object persistence mechanism
with transparent data management in hierarchical storage
using the PDC system;

2) Exploration of PDC data management server placement
options in shared and dedicated modes;

3) Implementation of data movement strategies using TCP
and Cray GNI;

4) Evaluation and demonstration of an object-centric HPC
storage system for scientific use cases.

The paper is organized as follows: we first discuss related
work in Section II, and then introduce in Section III our
PDC system architecture enabling object storage and data
movement model. In Section IV, we outline APIs that enable
data transfer without explicit read and write semantics and
provide experimental results, evaluating new methodology in
the PDC system using I/O patterns representative of science
applications on HPC systems.

II. RELATED WORK

As part of the POSIX standard defined in the late 1980s,
POSIX-IO [2], describes the file access API, data model, and
data consistency semantics. In POSIX-IO, data is viewed as
a stream of bytes. Parallel file systems, such as PVFS [3],
[4], Lustre [5], GPFS [6], and NFS [7] were all designed to
comply with the POSIX-IO standard. However, compliance to
POSIX-IO comes with a cost, as its original design was not
intended for highly concurrent programming models, which
are now common in HPC systems [8]. As we are moving
toward an increasing system complexity with an increas-
ing number of memory/storage layers, the I/O bottleneck is
becoming increasingly severe and significantly hinders the
overall application performance [9], [10]. To alleviate the I/O
bottleneck, research efforts have been made to relax the POSIX
semantics across the parallel I/O software stack: from high-
level libraries (e.g., HDF5 [11], netCDF [12], ADIOS [13]),
I/O middleware (e.g., MPI-IO [14], TAPIOCA [15]), to I/O
forwarding layers [16]. HDF5, netCDF, and ADIOS provide

445

2018 IEEE International Conference on Cluster Computing

2168-9253/18/$31.00 ©2018 IEEE
DOI 10.1109/CLUSTER.2018.00063



Disk

Disk

Compute Nodes Burst-buffer Nodes

Fig. 1. Simplified representation of a pre-exascale system with multi-tier
storage. PDC running services are highlighted in blue. PDC services are either
co-located within the same node or distributed over remote burst buffer nodes.

an array-based data model to organize the data and define data
access semantics.

New data models have also been proposed, such as object-
based storage [17] [18] [19] [20], which describes an abstract
data container that consists of many byte-streams (or objects).
[21] provides a detailed analysis that discusses whether the
object model is the right abstraction level in HPC and on
big data platform. Ceph [22] and DAOS [23] are emerg-
ing as possible replacements for parallel file systems, with
objects being defined as first-class citizens. However, their
scalability is still under evaluation and their features are still
in development [24]. Object storage in cloud environments,
such as Amazon S3 [25] and OpenStack Swift [26], provide
object-centric interfaces and data management. However, their
applicability in HPC systems is limited by the tightly coupled
storage hierarchy and stringent performance requirements of
science applications. Tyr [27] proposes a new object storage
system, which features built-in high-performance support for
multiple object transactions and guarantees objects transaction
with low overhead. Furthermore, research efforts to implement
object-based storage have been attempted on single levels
separately, but none has integrated those efforts across the
entire memory hierarchies. UNITY [28] proposes a distributed
runtime on each node and manages local data objects place-
ment by mapping data from application to local resources upon
availability. However, TCASM [29] used by UNITY to share
memory from application requires kernel-level modification.

III. ARCHITECTURE

In this section, we introduce our data management inter-
face in the Proactive Data Containers (PDC) system that
targets enabling efficient and scalable data management for
the upcoming exascale storage systems. Figure 1 shows a
simplified representation of a PDC enabled system and where
the application’s data may reside. A PDC runtime system,
consisting of servers, allows efficient data movement in critical
areas of the exascale data management software stack to take
place and enables in-transit and in-situ analysis operations.

The main abstractions of PDC are its data constructs and
operations performed on the data constructs. As shown in
Figure 2, the data constructs include Containers, Objects, and
Regions, all of which can have different Properties. An Object
is a generic term to describe byte streams in an abstract
manner, which can represent either a data variable or an
application object depending on a user’s definition. In PDC,

Application Memory Storage Locus

Container

Object
Region

Objects

Mapping + Data Movement

Application Memory Storage Locus

Container

Object
Region

Objects

Mapping + Data Movement

Application Memory Storage Locus

Container

Object
Region

Objects

Mapping + Data Movement

Fig. 2. A mapping operation established between an application’s memory
region and a PDC object region.

data objects can be arrays or key-value pairs. Objects in PDC
are globally visible, independently of their storage hierarchy.

A Container is a collection of Objects that share similar
user-defined attributes, such as all data variables produced
by a simulation or an experiment. As shown in Figure 2,
PDC contains a set of objects, where the objects are managed
by PDC services and are placed at any level of the storage
hierarchy (e.g., NVRAM, burst-buffer, disk, etc.). We abstract
the containers consisting of data within the entire storage
stack. This approach spreads the data, objects, and containers
over different types of storage media, defined as storage locus,
which can be thought of as levels of cache. PDC also uses
the concept of spatial regions, which partition the problem
domain into smaller sub-regions. Each region contains the
actual data and associated metadata, and is the basic unit
for data movement operations in PDC. All of the previously
mentioned entities include Properties, regarded as metadata.
A user also may add rich metadata as tags [30].

Common I/O libraries have been providing so far explicit
data movement operations through read and write functions,
including our previous work [1]. In this paper, we introduce
the concept of object mapping to make those calls implicit to
the user by defining a map operation.

1) Object Mapping Mechanism: As highlighted in Figure 2,
the object mapping primitive allows a user to define a mapping
between a region within an application’s memory and a region
within a global PDC object. Mapping operations are defined
on a per-region basis and can be thought of as a publish and
subscribe mechanism, in the sense that once a mapping is
established and a region is published, data movement can
occur to keep updates globally visible. When defining a
mapping, the application provides property information about
the mapped region, which is essential for the PDC system to
keep track of the mappings that are established and prevent
potential overlaps. More complex mappings can be built upon
this primitive such as object to object mapping, though in this
paper we focus on the application memory to PDC object
mapping exclusively.

2) Consistency and Locking Mechanism: To keep data
consistency between the application’s memory and the PDC
object, we propose locking semantics for PDC objects (at
the region granularity so that multiple regions of an object
can be concurrently updated) and distinguish read locks from
write locks. Assuming the mapping from memory to object has
already been established, when a user has the intent to modify

446



the application’s memory region, the object region write lock
must be acquired before any memory write access can occur
(or that access would be considered as undefined). After the
write lock is acquired, further changes to the object data region
is not allowed globally until the lock is released. Once the
lock is released per user’s request, it effectively notifies the
PDC system that it is now safe to move data between storage
locations, and data movement will occur asynchronously if
the memory region has been modified. Similarly in the case
of read locks, the application expresses the intent of accessing
the data and effectively prevents the PDC system from making
any implicit update to the memory mapped buffers while they
are being read.

IV. IMPLEMENTATION AND EVALUATION

Our implementation of PDC adopts a client-server approach
to monitor and manage I/O operations on objects. Along with
enabling multithreading capabilities to the server, PDC is able
to asynchronously handle I/O operations in the background,
while the client application proceeds with computation without
having to wait for persistent I/O to be done, exploiting the
compute and storage resource strengths of each storage locus.
Several approaches can be considered when designing a client-
server middleware for HPC, however the trend has now been
to design HPC system software components in user-space
exclusively: first, no additional kernel module or kernel code
modification is necessary; second, it eliminates the extra cost
of entering the kernel. In our architecture, PDC servers manage
both metadata and data. PDC separates data from metadata,
which is also used to locate the data spread across data servers.
Both data and metadata are managed in a flat namespace.

We have developed two server placement strategies, where
the server may be either co-located on the same nodes with
the application (i.e., shared mode) or on separate nodes (i.e.,
dedicated mode). In both cases, we have relied on the Mer-
cury [31] package, an HPC-optimized C library for Remote
Procedure Calls (RPCs), as the communication mechanism
between client and server and between servers.

1) Experimental Setup: We use the Cori supercomputer at
the National Energy Research Scientific Computing Center
(NERSC), which is a Cray XC40 supercomputer with 1630
Intel Xeon Haswell nodes. Each node consists of 32 cores and
128GB memory. The shared file system Lustre is HDD-based.
There is also an SSD-based “Burst Buffer”, located between
compute nodes and storage systems on Cori.

With the shared mode, we have one PDC server on each
node, which occupies one core leaving the remaining 31
cores for user application execution. In the dedicated mode,
PDC servers and user’s application are on separate nodes. We
configure Mercury with two communication protocols using
the libfabric plugin [32] over TCP and over Cray GNI [33].
In the latter case, the PDC server was configured to use Cray
DRC to allow the user’s application and PDC server to share
credentials and communicate together.

We used VPIC-IO to evaluate the PDC system’s perfor-
mance, which is extracted from VPIC [34], a code developed

Fig. 3. Four major steps to enable data movement by PDC without making
any explicit data copy or transfer call.

Fig. 4. Time for one VPIC-IO property to establish mapping between memory
buffer and a PDC object.

for simulating several plasma physics phenomenon. In VPIC-
IO, each MPI process writes a region of 8M (8×220) particles
and each particle has 8 properties. Each reported time includes
client and server communication time, data and metadata
server communication time, metadata maintain time and data
movement time, if any of these is involved. We only report
the time by multithreading server execution.

2) Mapping Memory to a PDC Object: As the first step
in Figure 3, the client initiates a call to create an object by
calling PDCobj_create() before the mapping procedure,
and the metadata server receives the RPC call, creates a unique
metadata on one metadata server, and generates a global object
ID. As the second step in Figure 3, the client establishes a map
relationship between the application’s data in memory and an
object, created globally at any level of the memory hierarchy,
by calling PDCbuf_obj_map().

Figure 4 shows the time to map between memory and
an object for both shared and dedicated modes. The “single
object” timing is measured by adding synchronization before
and after each map function. For “all objects” case, the time is
measured by adding a barrier before the first and after the last
map function. That time is divided by 8 (the number of particle
properties in VPIC-IO) for average and compared to “single
object” measurement. That is the same for the following
experiments. The x-axis is the number of client processes and
PDC servers (in brackets). We observe the mapping process
with dedicated mode is faster than with shared mode. This
is because the servers in dedicated mode have more compute
resources due to configuration. Overall, the mapping overhead
is small and is a one-time effort.

447



Fig. 5. Time to release the lock for one object with shared server.

Fig. 6. Time to release the lock for all objects with dedicated server.

3) Object Lock: Typically, before an application modifies
data in memory, a PDCreg_obtain_lock() call is re-
quired for the mapped regions as shown in Figure 3 (step
3). The object region lock list, which is stored only in
the local data servers, is updated accordingly. Unlike the
mapping requests, there is no communication between data
and metadata servers. Similar to the mapping overhead, the
locking overhead is less than 0.15s, which is negligible.

4) Object Lock Release: Once a client initiates a lock
release operation by calling PDCreg_release_lock() as
shown in Figure 3 (step 4), the data server takes over the task
and determines if data transfer is needed by going through
the object region lock list. If so, the data server initiates a
one-sided data transfer using remote memory access (RMA)
by Mercury, which makes use of cross memory attach (CMA)
for zero copy transfers when using shared-memory in shared
mode, or makes use of native RDMA exposed by the system
(e.g., uGNI over libfabric) in dedicated mode. The data server
responds to the application lock request once it receives data
from the client, and in background asynchronously writes to
lower storage tiers (i.e., burst buffer, file system). With two
copies of results, data in data server is able to be quickly
shared to other analysis or post processing tasks, such as in
situ processing, while the copy in permanent storage allows
the data to be recovered even if the application sees a fault
for any reason.

With the extra threads dealing with asynchronously transfer,
lock release time is around 0.5s for the shared mode (Fig-
ures 5) and 0.6s for the dedicated mode (not presented) by
hiding the actual data transfer time to lower storage, whereas
the time is ≈2s to 2.5s without asynchronous I/O.

5) Object Lock Release with GNI: To enable faster commu-
nication and data transfer, we compare the lock release time
using Cray GNI instead of TCP used in previous experiments,

Fig. 7. Time to move data from application memory to burst buffer by the
user’s point of view.

since libfabric with GNI is targeting multithreaded applications
requiring concurrent access to Aries high speed network
(Cori network), with minimal contention between threads. In
Figure 6 we show that the performance of lock release for
dedicated mode using GNI is ≈3s compared to 4.5s using
TCP protocol to release all objects.

6) PDC Server Controlled Data Movement Performance
Comparison: We compare the I/O performance of the new
PDC mechanisms against HDF5 (with multiple optimiza-
tions [35]) for VPIC-IO and against our previous work of
explicit I/O in PDC [1], by moving data from memory to
a lower storage tier through Lustre (not presented) and burst
buffer (Figure 7) from the view of application users. Each
process writes 256MB of data. We use PDC servers in shared
mode since that was the configuration in our previous work.
When using HDF5, data is written to the storage directly as
a single file. From the users’ perspective, the performance of
the new PDC server-managed method is improved by 65%
and 49% on average compared to HDF5 writing directly to
file system and burst buffer respectively, with asynchronous
data movement. It also outperforms our previous client-explicit
asynchronous I/O by 10% and 25% on average with respect
to writing to file system and burst buffer.

V. CONCLUSION

Considering the challenges presented by current I/O and
inefficiency of data management and movement across deep
memory hierarchies, we propose and investigate Proactive
Data Containers (PDC), which may reside in a single storage
location or span across multi-tier storage. The PDC object-
centric system provides a novel mechanism of map, lock,
and lock release to enable autonomous and asynchronous data
movement, eliminating the burden of data movement decisions
by application scientists. Our future work includes enabling
data transformation and analysis framework in PDC as well
as making communication between servers topology aware.

ACKNOWLEDGMENT

This work is supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 and DE-SC0016454 (Program manager: Dr. Lucy
Nowell). This research used resources of the National Energy
Research Scientific Computing Center (NERSC).

448



REFERENCES

[1] H. Tang, S. Byna, F. Tessier, T. Wang, B. Dong, J. Mu, Q. Koziol,
J. Soumagne, V. Vishwanath, J. Liu, and R. Warren, “Toward Scalable
and Asynchronous Object-centric Data Management for HPC,” in CC-
GRID, 2018.

[2] S. R. Walli, “The POSIX Family of Standards,” StandardView, vol. 3,
no. 1, pp. 11–17, Mar. 1995.

[3] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “PVFS: A Parallel
Virtual File System for Linux Clusters,” Linux J., 2000.

[4] M. Moore et al., “OrangeFS: Advancing PVFS,” FAST poster session,
2011.

[5] P. J. Braam et al., “The Lustre storage architecture,” 2004.
[6] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System

for Large Computing Clusters.” in FAST, vol. 2, 2002, pp. 231–244.
[7] S. Microsystems, “NFS: Network File System Protocol Specification,”

1989.
[8] K. J. Barker et al., “Entering the Petaflop Era: The Architecture and

Performance of Roadrunner,” in Supercomputing, 2008.
[9] M. Jung, W. Choi, J. Shalf, and M. T. Kandemir, “Triple-A: A Non-

SSD Based Autonomic All-flash Array for High Performance Storage
Systems,” SIGPLAN Not., vol. 49, pp. 441–454, 2014.

[10] F. Schürmann and et.al., “Rebasing I/O for Scientific Computing: Lever-
aging Storage Class Memory in an IBM BlueGene/Q Supercomputer,”
in ISC, 2014, pp. 331–347.

[11] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in
EDBT/ICDT, 2011, pp. 36–47.

[12] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A High-Performance Scientific I/O Interface,” in Supercomputing, 2003
ACM/IEEE Conference, Nov 2003, pp. 39–39.

[13] Q. Liu, J. Logan, Y. Tian et al., “Hello ADIOS: the challenges and
lessons of developing leadership class I/O frameworks,” Concurrency
and Computation: Practice and Experience, vol. 26, no. 7, pp. 1453–
1473, 2014.

[14] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably
and with High Performance,” in ICPADS, 1999, pp. 23–32.

[15] F. Tessier, V. Vishwanath, and E. Jeannot, “TAPIOCA: An I/O Library
for Optimized Topology-Aware Data Aggregation on Large-Scale Su-
percomputers,” in CLUSTER, 2017, pp. 70–80.

[16] B. Welton, D. Kimpe, J. Cope, C. M. Patrick, K. Iskra, and R. Ross,
“Improving I/O Forwarding Throughput with Data Compression,” in
CLUSTER, 2011, pp. 438–445.

[17] A. L. Brown and R. Morrison, “A Generic Persistent Object Store,”
Software Engineering Journal, vol. 7, no. 2, pp. 161–168, March 1992.

[18] J. E. B. Moss, “Design of the mneme persistent object store,” ACM
Trans. Inf. Syst., vol. 8, no. 2, pp. 103–139, Apr. 1990. [Online].
Available: http://doi.acm.org/10.1145/96105.96109

[19] W. P. Cockshot, M. P. Atkinson, K. J. Chisholm, P. J. Bailey,
and R. Morrison, “Persistent object management system,” Software:
Practice and Experience, vol. 14, no. 1, pp. 49–71, 1984. [Online].
Available: http://dx.doi.org/10.1002/spe.4380140106

[20] G. A. Gibson et al., “A Cost-effective, High-bandwidth Storage Archi-
tecture,” SIGPLAN Not., vol. 33, pp. 92–103.

[21] P. Matri, A. Costan, G. Antoniu, J. Montes, and M. Prez, “Could
Blobs Fuel Storage-Based Convergence Between HPC and Big Data?”
in CLUSTER. IEEE, 2017.

[22] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-performance Distributed File System,” in
OSDI, 2006, pp. 307–320.

[23] J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent, and E. Barton,
“DAOS and Friends: A Proposal for an Exascale Storage System,” in
Supercomputing, 2016, pp. 50:1–50:12.

[24] M. S. Breitenfeld, N. Fortner, J. Henderson, J. Soumagne, M. Chaarawi,
J. Lombardi, and Q. Koziol, “DAOS for Extreme-scale Systems in
Scientific Applications,” CoRR, vol. abs/1712.00423, 2017. [Online].
Available: http://arxiv.org/abs/1712.00423

[25] Amazon. Amazon Web Services. Http://s3.amazonaws.com.
[26] J. Arnold, OpenStack Swift: Using, administering, and developing for

swift object storage. O’Reilly Media, Inc., 2014.
[27] P. Matri, Y. Alforov, A. Brandon, M. Kuhn, P. Carns, and L. T., “Tr:

Blob Storage Meets Built-In Transactions,” in SC. IEEE, 2016.

[28] T. Jones, M. J. Brim, G. Vallee, B. Mayer, A. Welch, T. Li, M. Lang,
L. Ionkov, D. Otstott, A. Gavrilovska, G. Eisenhauer, T. Doudali,
and P. Fernando, “UNITY: Unified Memory and File Space,” in
Proceedings of the 7th International Workshop on Runtime and
Operating Systems for Supercomputers ROSS 2017, ser. ROSS ’17.
New York, NY, USA: ACM, 2017, pp. 6:1–6:8. [Online]. Available:
http://doi.acm.org/10.1145/3095770.3095776

[29] D. Otstott, N. Evans, and L. Ionkov, “Enabling composite applications
through an asynchronous shared memory interface.” Big Data (Big
Data), 2014 IEEE International Conference on, 2014, pp. 219–224.

[30] H. Tang, S. Byna, B. Dong, J. Liu, and Q. Koziol, “SoMeta: Scalable
Object-Centric Metadata Management for High Performance Comput-
ing,” in 2017 IEEE International Conference on Cluster Computing
(CLUSTER), Sept 2017, pp. 359–369.

[31] J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Af-
sahi, and R. Ross, “Mercury: Enabling Remote Procedure Call for High-
Performance Computing,” in 2013 IEEE International Conference on
Cluster Computing (CLUSTER), Sept 2013, pp. 1–8.

[32] Libfabric. [Online]. Available: https://ofiwg.github.io/libfabric/
[33] H. Pritchard, E. Harvey, S.-E. Choi, J. Swaro, and Z. Tiffany, “The GNI

provider layer for OFI libfabric,” in Proceedings of Cray User Group
Meeting, CUG 2016, 2016.

[34] K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulationa),” Physics of Plasmas, vol. 15, no. 5, 2008.

[35] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt,
Q. Koziol, and M. Snir, “Taming Parallel I/O Complexity with
Auto-tuning,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis,
ser. SC ’13, 2013, pp. 68:1–68:12. [Online]. Available: http:
//doi.acm.org/10.1145/2503210.2503278

449


